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Let each plant observation be defined by a geolocation:
Xi = (Qbi; /11)
where:
* @, is the latitude of observation i
« A; is the longitude of observation i

Let the reference point in Southwestern Europe be:
¥ = (¢f, /11) = (44, 4)
We compute the squared Euclidean distance from each observation to the reference point:
d; = (pi — Po)* + (A — Ag)?
For each species s € S, let I, be the set of indices of observations belonging to species s.
Then, define:

i, = argmin,

el d;

That is, i} is the observation of species in s that is closest to the reference point

Pipeline

We leverage the embedding space learned by the VITD2PC24All model as a generalized feature representation of images, which are used for classification
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Cluster-wise Prior Estimation

where:

- 7™ € RC is the average softmax probability vector for cluster k
* f(x;) is the softmax output from the fine-tuned DINOv2 model
« Xi = {x;]c(i) = k} is the set of tiles in cluster k
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Final Prediction with Cluster-Aware Prior
fx) o e
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where:
* (©denotes element-wise multiplication
« ¢(1) is the cluster assignment for tile x;
J ?i € IR€ is the final prediction vector for tile x;

e Cluster 1: “Coastal and Salt-Tolerant Plants”
Salt-tolerant and drought-resistant, coastal dunes, salt marshes, and sandy habitats

e Cluster 3: “Alpine Grasses and Ferns”
Resilient grasses and ferns, this cluster thrives in alpine grasslands and sub-alpine

. zones, often in rocky or well-drained soils

Main Takeaways

Classification method Private (%) Public (%)

Naive baseline, top-5 0.00422 0.00736
Naive baseline, top-10 0.00776 0.00466
Naive baseline, top-25 0.00571 0.00440
Baseline, top-20, no tiling 0.00633 0.01157
Baseline, top-20, 4x4 0.26313 0.25239
Baseline, top-9, 4x4 0.34420 0.30810
Baseline, top-9, 4x4, PRIOR 0.34834 0.29293
Baseline, top-10, 4x4 0.33926 0.30906
Baseline, top-10, 4x4, GEOLOCATION 0.34489 0.31600
Baseline, top-12, 4x4 0.32667 0.30203
Baseline, top-10, Grounding DINO + NMS 0.21083 0.23913

Best Solutions

o Baseline + tiling significantly boosts performance
compared to naive frequency based methods

e Cluster-based priors derived from PaCMAP + KMeans
embeddings vield the highest private score (0.3483)

e Geolocation filtering using spatial metadata vields the
best public leaderboard score (0.3160), effectively
reducing the long-tailed label space

Our Approach

o Patch-wise inference bridges the gap between single-
label training data and multi-label plot images by tiling
test images into a 4x4 grid

 Each tile is independently classified using a ViT fine-tuned
on PlantCLEF data, and predictions are aggregated to
produce image-level labels

« We empirically matched tile size to the model resolution,
reducing input distortion and improving accuracy

e Hierarchical taxonomic structure (genus/family) into the
model to improve generalization = fine-tune CLIP model

e Leverage external metadata (altitude, soil type) to refine
spatial priors

 Explore contrastive learning or multi-view training to
better align single-plant training with multi-label test plots

e |nvestigate ensemble methods combining prior-
reweighted, geolocation-filtered, and object-detection-
based classifiers



